INTRODUCING THE MOST ADVANCED INNOVATION IN DYNAMIC RESPIRATORY MOTION TRACKING

The CyberKnife System with the Synchrony Respiratory Tracking System is the only radiosurgery system in the world that identifies tumor position throughout the treatment and synchronizes treatment delivery to the motion of the tumor throughout the respiratory cycle.

Dramatically Improving Treatment Options While Decreasing Treatment Times

- Dynamically tracks all targets that move with respiration
- Improves accuracy of radiation delivery
- Minimizes irradiation of healthy tissue or critical structures
- Treats complex targets
- Eliminates painful breath-holding
- Eliminates complex gating techniques
- Decreases treatment times
- Simpler, more streamlined procedures
- Easy to learn and use

The Synchrony System simultaneously tracks both movement of the tumor and breathing patterns of the patient. The robotic arm adjusts and compensates for these movements ensuring more accurate treatment and eliminating breath-holding or gating requirements.

World’s Most Accurate Dynamic Radiosurgery System

A recent multi-center study reported targeting centroid accuracy better than 1.5mm.*

*Data on file

World’s first and only technology that allows truly dynamic radiosurgery to be performed on tumors that move with respiration.

The system tracks respiration in real time and automatically adjusts to any changes in the patient’s breathing pattern.
Synchrony Tracking Markers and Vest

- High patient throughput
- Easy patient set-up
- Multiple stage repeatability
- Easy marker placement/repositioning
- Allows mid-treatment patient breaks
- Patient breathes normally
- Patient comfort
- Hygenic and infection control

Expanding Accurate Radiosurgery Treatment to all Tumors that Move with Respiration

- Lung
- Pancreas
- Liver
- Kidney
- Other abdominal/thoracic

The Synchrony System permits patients to breathe normally throughout their treatment, without breath-holding or gating techniques. The Synchrony System will allow physicians, for the first time, to treat their patients with much tighter margins, no longer having to add significant margins to compensate for a moving target, thus sparing more healthy tissue.

The patient breathes normally while the system delivers pencil thin accurate beams to the moving target.