RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident

Competency Evaluation of Resident				
Resident's Name:				
Rotation:	PHYS 707: CI	inical Rotation	4	
Inclusive dates of rotation:	Feb. 26, 2010	6 – Aug. 25, 20	16	
Director or Associate Director:				
Evaluation criteria	Not Competent	Marginally Competent	Fully Competent	Explanatory Notes & Mentor Signature
Intensity-modulated Radiation Therapy (IMRT) - 1: Inverse Planning				
a. Demonstrates understanding of the use of objective functions for IMRT optimization				
b. Understands the optimization processes involved in inverse planning				
c. Performs inverse planning optimization for a variety of treatment sites in sufficient number to become proficient in the optimization process				
d. Understands commonly used planning procedures and guidelines as well as optimization and dose calculation algorithms				
IMRT/VMAT - Planning				
a. Principles of IMRT/VMAT: The Resident will be familiar with the various commercially available systems for planning and delivery of IMRT/VMAT				
b. Theory of inverse planning: The Resident will learn how the clinical planning system optimizes a treatment plan. He/she will be familiar with the inputs to the cost function, how it is calculated, and be familiar with the interplay between sometimes competing objectives				

		,	
c. Special contouring techniques for			
IMRT/VMAT: The Resident will be able			
to convert "clinical" contours into			
inputs suitable for optimization.			
Target volumes are made unique and			
sometimes subdivided for various			
goals. Non-anatomical volumes are			
added to the patient anatomy, and			
margins are added to normal tissues			
d. Dose calculation and plan evaluation:			
The Resident will learn how the			
planning system calculates dose			
distributions from optimal fluence			
maps. He/she will evaluate treatment			
plans with respect to dose			
heterogeneity, plan complexity, and			
susceptibility to setup variations			
e. Practical training: The Resident will			
plan a number of practice cases under			
the guidance of a physics mentor (a			
prostate and a head & neck) and then			
move to dosimetry to plan/observe a			
number of live patient cases. The live			
cases will also involve the			
development of verification plans,			
documentation, and import to the			
record and verify system:			
i. Practice cases: two prostate,			
two head & neck			
ii. Live cases: two prostates, two			
head & neck			
Intensity-modulated Radiation			
VMAT Delivery			
a. Understands various IMRT delivery			
techniques (e.g., compensators,			
static field IMRT, rotational delivery			
techniques) and their relative			
advantages and disadvantages			
b. Describes the differences between			
dynamic multileaf collimator (DMLC)			
and segmental multileaf collimator			
(SMLC) leaf sequencing algorithms in			
terms of delivery parameters and			
dose distributions			
c. Participates in IMRT or VMAT delivery			
for patients with a variety of			
treatment sites and understands the			
techniques and requirements for			
patient setup, immobilization, and			

localization		
Intensity modulated Rediction		
Intensity-modulated Radiation		
Therapy (IMRT) - 3: IMRT and		
VMAT Quality Assurance		
a. Understands the appropriate level of		
quality control tests for IMRT &		
VMAT		
b. Understands commonly used QA		
procedures and guidelines, delivery		
and dosimetry equipment, and QA		
analysis techniques		
c. Calculates verification plans within		
the treatment planning system		
along with independent checks using secondary MU calculation software		
d. Performs IMRT/VMAT delivery QA		
measurements using 2D/3D array,		
film, or ion chamber techniques, an		
activity that includes analysis of		
results and determination of passing		
criteria (which will involve familiarity		
with the concept of gamma analysis)		
e. Performs and analyzes MLC QA		
measurements designed for		
accelerators used for IMRT/VMAT		
f. Reviews individual patient-specific QA		
results with staff physicists and		
physicians		
IMRT/VMAT QA – 3: Advanced		
a. IMRT/VMAT QA overview: The		
Resident will be able to describe the		
elements of systemic and patient-		
specific IMRT/VMAT QA. He will be		
able to indicate which features of an		
IMRT/VMAT plan must be validated		
before treatment and how they are		
tested within the clinic's QA program		
b. IMRT/VMAT QA techniques: The		
Resident will become proficient in each of the IMRT/VMAT QA systems		
used in the clinic and will be able to		
describe the strengths and		
weaknesses of each technique.		
He/she will be able to cite the specific		
reason for each test, know its		
thresholds for passage or failure, and		
know how to proceed if a plan fails		

1	1		
QA:			
i. Ion Chamber Measurements			
Selection of dose measurement			
points			
 Delivering IMRT/VMAT plan to 			
phantom			
'			
ii. EPID Portal Dosimetry			
Generation of portal dose images			
Dosimetric calibration of EPID			
 Measuring portal dose images 			
 Evaluation techniques (profiles, 			
isodose, gamma)			
iii. MU calculation			
When MU calculation is			
appropriate			
iv. Detector array (e.g., MapCHECK,			
ArcCHECK)			
·			
Strengths and weaknesses The and FND			
compared to film and EPID			
c. Practical Experience: Resident will			
spend at least 2 weeks functioning as			
an IMRT/VMAT QA physicist,			
practicing all aspects of routine			
IMRT/VMAT QA			
Intensity-modulated Radiation			
-			
Therapy (IMRT) - 4: Radiation			
Safety			
a. Understands IMRT delivery's effects			
on leakage radiation and its potential			
effects on patients and personnel			
exposure			
b. Understands the effects of different			
IMRT delivery techniques on the			
amount of leakage radiation			
produced			
c. Understands the effects of IMRT			
delivery on vault shielding			
requirements			
Book the con-			
Brachytherapy – General Aspects			
a. The Resident will be familiar with			
procedures, hardware, and isotopes			
used for the treatment of the most			
common anatomic sites treated with			
sealed-source radionuclide therapy			
b. The physical characteristics, assay,			
b. The physical characteristics, assay, handling, licensing, and disposal (if			

	1	ı	
applicable) of brachytherapy sources			
will be learned by the Resident			
c. The Resident must be able to quality			
assure the computer system used to			
generate information utilized to plan			
and treat patients with radionuclide			
sources			
d. The Resident should be able to show			
competence in physics and dosimetric			
services in support of the clinical use			
of sealed radionuclide sources in the			
treatment of the following. If a case			
does not occur or is now extremely			
uncommon, the Resident should			
perform a mock treatment; or the			
requirement may be waived at the			
discretion of the Rotation Supervisor: • Biliary duct: intraluminal			
Eye plaque Pormanent lung implants: planar			
Permanent lung implants: planar Permanent prostate seed implants:			
Permanent prostate seed implants: Permanent prostate seed implants: Permanent prostate seed implants: Permanent prostate seed implants:			
volume interstitial			
e. The Resident should be able to show			
competence in physics and dosimetric			
services in support of the HDR clinical			
treatments of the following. If a case			
does not occur or is now extremely			
uncommon, then the Resident should			
perform a mock treatment; or the			
requirement may be waived at the			
discretion of the Rotation Supervisor:			
Vaginal cylinder HDR. Tandam and Bing Flatcher Suit			
• Tandem and Ring – Fletcher Suit –			
HDR.			
• Interstitial HDR.			
Planar intraoperative HDR (IOHDR)			
f. The Resident should observe and			
actively participate in as many			
brachytherapy cases as reasonably			
possible such that they gain sufficient			
experience and confidence to do the			
case themselves. Because some cases			
do not occur very often, the Resident			
is expected to place a higher priority			
on the attendance of brachytherapy			
cases			
g. The Resident should be able to			
perform all aspects of the LDR and			
HDR QA independently (although the			
Resident will not be asked to do so if			
it is not within regulations). The			
Resident should participate in a			

		T	
minimum of two source exchanges			
h. The Resident will be familiar with			
federal, state, and local regulatory			
documents related to sealed-source			
therapy			
i. The Resident will learn and generate			
two mock treatment plans for an LDR			
and HDR case			
and here ease			
Brachytherapy - 1: Sealed			
Radionuclides Sources			
a. Demonstrates an understanding of			
how commonly used sources are			
generated			
b. Describes the decay, decay energies			
(mean energy), and half-lives of			
commonly used sources			
c. Describes the form and construction			
of sealed sources			
d. Describes and defines the different			
units of source strength that have			
been used in the past and the			
present			
e. Performs an example decay			
calculation of the total dose delivered			
for temporary and permanent			
implants			
f. Describes personal protection			
techniques (involving time, distance,			
and shielding) and safe handling of			
sealed sources			
g. Describes the appropriate methods			
of storing radioactive material (with			
regard to security and accountability)			
h. Performs routine receipt procedures			
and both checks into inventory and			
checks out temporary and			
permanent sources			
i. Performs a source room survey and a			
quarterly inventory			
j. Describes and, if possible, performs			
leak checks on sealed sources			
k. Demonstrates an understanding	Τ	\exists	
and gains hands-on experience of			
radioactive material packaging and			
transportation requirements, e.g.,			
Title 49 of the U.S. Code of Federal			
Regulations (CFR)			
· , ,			

I. Demonstrates an understanding of			
the equipment used to calibrate			
sealed sources			
m. Describes the process by which			
sealed sources are calibrated			
n. Describes the process by which			
measurement equipment (e.g.,			
electrometers, well ionization			
chambers) is calibrated			
o. Explains the theory of operation of a			
well ionization chamber			
p. Describes and performs an assay for			
sealed sources			
q. Demonstrates an understanding			
of licensing issues and			
requirements (e.g., NUREG 1556)			
r. Describes the operation and			
appropriateness of different survey			
instruments (e.g., Geiger-Müller			
counters, ionization survey meters,			
scintillation counters)			
s. Demonstrates an understanding of			
the regulatory requirements			
pertaining to sealed sources, e.g.,			
state or federal regulations such as			
Title 10 of the U.S. CFR Part 35			
(10CFR35)			
Brachytherapy - 2: Unsealed			
Radionuclides Sources			
a. Demonstrates an understanding of			
how commonly used			
radiopharmaceuticals (e.g., I-131, P-			
32, Sm-153, Sr-89) are generated			
b. Demonstrates an understanding of the decay, decay energies (mean			
energy), and half- lives of commonly			
used radiopharmaceuticals			
c. Describes personal protection	+		
techniques (involving time, distance,			
and shielding) and safe handling of			
unsealed sources			
d. Describes the process by which			
unsealed sources are calibrated			
e. Describes the process by which			
measurement equipment (e.g., dose			
calibrator) is calibrated			
f. Describes and, if possible, performs			
an assay for unsealed sources			

_	1	T	
g. Demonstrates an understanding			
of licensing issues and			
requirements (e.g., NUREG 1556)			
h. Describes the operation and			
appropriateness of different survey			
instruments (e.g. Geiger-Müller			
counters, ionization chambers,			
scintillation counters)			
i. Demonstrates an understanding of			
the regulatory requirements for			
unsealed sources, e.g.,			
state/provincial or federal regulations			
such as 10 CFR 35			
Brachytherapy - 3: Radiation			
Protection			
a. Demonstrates an understanding of			
shielding calculations for primary			
and secondary barriers (e.g., NCRP			
151)			
b. Describes the key parameters			
necessary to perform a shielding			
calculation			
c. Describes or performs a shielding			
calculation for a brachytherapy vault			
d. Describes or performs a radiation			
survey for a brachytherapy vault			
e. Describes requirements for personal			
radiation safety badges			
f. Describes labeling, shipping, and			
receiving requirements for radioactive			
material			
g. Describes management of an isotope			
inventory			
h. Describes release criteria for			
radioactive patients (i.e., patients with			
temporary or permanent implants			
and radiopharmaceuticals)			
i. Describes how to handle changes in			
medical status for radioactive			
patients (i.e., in cases of medical			
emergency or death, as per NCRP			
155)			
j. Explains the key concepts of			
state/provincial or federal regulations			
(e.g., Title 10 of CFR parts 19, 20,			
and 35)			
k. Demonstrates how to safely operate			
a remote afterloader unit, including			
emergency procedures			
emergency procedures			

Brachytherapy - 4: Clinical		
, , ,		
Applications		
a. Describes the various brachytherapy sources that have been used		
clinically in the past and which are		
used today, as well as the rationale		
for source selection		
b. Describes how a brachytherapy		
program is developed		
c. Describes in detail the use and		
operation of the following different		
brachytherapy modalities and their		
advantages and disadvantages:		
i. Low dose rate (LDR) ii. High dose rate (HDR)		
iii. Pulsed dose rate (PDR; optional)		
iv. Electronic (optional)		
d. Describes and performs		
verifications of source strength (air		
kerma rate, S_k) and comparisons		
between measured and vendor's		
specifications		
e. Describes radiation protection for		
radiation workers and visitors		
f. Demonstrates an understanding of		
commissioning and acceptance of		
remote after- loaders (RALs)		
g. Demonstrates an understanding of		
gynecologic (GYN) and genitourinary		
anatomy		
h. Demonstrates an understanding of		
the treatment of cervical and		
endometrial cancers with LDR, HDR,		
and PDR (optional)		
i. Demonstrates an understanding of		
prostate cancer and its treatment		
with HDR and LDR		
j. Treatment planning i. Demonstrates an understanding		
_		
of treatment planning commissioning		
ii. Performs brachytherapy		
treatment plans for a cylindrical		
GYN applicator		
iii. Performs brachytherapy		
treatment plans for cervical		
applicator (e.g., tandem and		
ovoids, tandem and ring)		
iv. Describes the differences		
between point- and volume-		

based treatment planning as per			
the ICRU 38 and the Groupe			
Européen de Curiethérapie (GEC)			
European Society for Radiotherapy			
and Oncology (ESTRO)			
recommendations			
v. Develops interstitial			
brachytherapy treatment plans			
(e.g., prostate cancer, GYN			
diseases, sarcoma)			
vi. Develops a brachytherapy			
treatment plan for an eye plaque			
(optional)			
vii. Performs an activity/dose			
calculation for microsphere			
therapy (optional)			
k. Demonstrates an understanding of			
applicator acceptance,			
commissioning, and the			
performance of periodic QA			
I. Demonstrates an understanding			
of and participates in/performs			
periodic spot checks, safety			
procedures, and source exchange			
QA, including source calibration			
m. Describes emergency training			
requirements for RALs (e.g., as			
specified in 10 CFR 35)			
n. Demonstrates an understanding of			
quality management programs as			
required by federal or			
state/provincial regulations for			
auditing			
o. Describes the criteria for			
recording/reporting and the			
subsequent handling of reportable			
events		 	
Brachytherapy - 4: Treatment			
Planning			
a. Demonstrates an understanding of			
the source strength of radioactive			
sources			
b. Describes dose rates and dose			
calculation formalisms for high-			
energy brachytherapy dosimetry			
(HEBD) and low-energy			
brachytherapy dosimetry (LEBD)			
c. Demonstrates an understanding of			
the performance of computerized			
planning of various imaging			
Pranting of various imaging			

modalities of LDR and HDR		
d. Describes in detail the advantages		
and disadvantages of dose		
optimization		
e. Describes and performs secondary		
calculations as QA checks for		
computerized planning	 	
Brachytherapy - 5: Quality		
Assurance		
	+	
a. Demonstrates an understanding of		
and performs comprehensive		
periodic QA (daily, monthly, annually) of a remote afterloader		
	+	
b. Describes and performs periodic		
treatment planning QA		
c. Demonstrates an understanding of		1
implant-specific QA		
Special Procedures - 1:		
Stereotactic Radiosurgery (SRS)		
a. Describes rationales for SRS		
treatments, examples of malignant		
and non-malignant lesions treated		
with SRS, and typical dose and		
fractionation schemes for linac-based		
and Co-60 SRS techniques		
b. Describes in general terms the		
components of commissioning an SRS		
sys- tem (e.g., accurate localization,		
mechanical precision, accurate and		1
optimal dose distribution, and		1
patient safety)		1
c. Describes the stereotactic		
localization of a target (e.g., on		
the basis of angiography as		1
opposed to CT and MRI) and how		1
the accuracy of this localization is		1
measured	 	
d. Describes the alignment of		
coordinate systems (e.g., target		1
frame of reference with linac frame		1
of reference) and how the		1
mechanical precision of this		1
alignment is measured		
e. Describes issues associated with		
dosimetry measurements for an SRS		
system (e.g., choice of dosimeter,		

	1	ı	1	,
phantom geometry, etc.)				
f. Describes the components of pre-				
treatment QA for an SRS system,				
including linac-based and Co-60 SRS				
techniques				
Special Procedures - 2:				
Stereotactic Body Radiation				
Therapy (SBRT)				
a. Explains the rationale for SBRT				
treatments, common treatment				
sites, and typical dose and				
fractionation schemes				
b. Describes immobilization and				
localization systems for SBRT				
treatments				
c. Describes the use of simulation				
imaging for SBRT target definition,				
including multi-modality imaging				
and 4D imaging for cases requiring				
motion management				
d. Describes treatment planning				
objectives for SBRT treatments,				
including dose limits, dose				
heterogeneity, dose gradient and				
fall-off, and beam geometry				
e. Describes treatment verification and				
delivery for SBRT treatments as well				
as use of in-room imaging				
f. Addresses the need for motion				
management in lung and abdomen				
SBRT treatments				
g. Describes treatment planning				
system validation tests, and in this				
context, tissue inhomogeneity				
corrections and small-field dosimetry				
measurements				